
Design and
Implementation of
Online Experiments

nodeGame.org

Stefano Balietti

MZES and Heidelberg

Some Extra
Concepts in
JavaScript

@balietti
@nodegameorg

stefanobalietti.com@gmail.com

First Exercise!

NPM: Node Package Manager

https://www.npmjs.com/

https://www.npmjs.com/

First Exercise!

The 11 Lines that Almost Broke the Internet

https://www.sciencealert.com/how-a-programmer-almost-broke-the-internet-by-
deleting-11-lines-of-code

https://www.sciencealert.com/how-a-programmer-almost-broke-the-internet-by-deleting-11-lines-of-code

First Exercise!

NPM: Node Package Manager

npm install one-liner-joke

• Creates a node_modules/ folder inside the same directory.

• It contains the requested module and all its dependencies.

• We can now require it and use it in our programs.

const joker = require('one-liner-joker');

var randomJoke = joker.getRandomJoke();

console.log(randomJoke);

JS Functions

⚫ JS functions are objects

⚫ Can be passed as parameters to other functions

⚫ Treat differently different input parameters

⚫ Can have properties

⚫ Can be executed with different contexts

⚫ Two types exists: declaration and expressions

⚫ Always remember the context of creation

JS Functions

JS Functions

JS Functions

Create an array of 10 functions returning the index in which they are inserted in
the array.

var i, len, obj;

len = 10, obj = [];

for (i = 0 ; i < len ; i++) {

obj[i] = function() { return i; }

}

Is the code below correct?

JS Functions

JS Functions

Create an array of 10 functions returning the index in which they are inserted in
the array.

var i, len, obj;

len = 10, obj = [];

for (i = 0 ; i < len ; i++) {

obj[i] = function() { return i; }

}

Is the code below correct?
• Creates 10 functions all

returning the value 10,
because they are all
referencing variable i, which
has value 10 when the loop
ends

JS Functions

JS Functions

We need a closure and a self-executing anonymous function!

for (i = 0 ; i < len ; i++) {

obj[i] = (function(i) {

return function() {

return i;

}

})(i);

}

JS Functions

JS this

function a() { return this.a; }

a(); // undefined

// Create a context.

var foo = { a: 1};

// call and apply set the this value

a.call(foo, 1, 2, 3); // 1;

a.apply(foo, [1, 2, 3]); // 1;

⚫ The value of this is dynamic in JavaScript
⚫ It is determined when function is called, not when it is declared.

JS Functions

JS this

What will the following code print to console?

function A() {

this.a = 1;

(function() {

console.log(this.a);

})();

}

// Create a new object.

var a = new A();

JS Functions

JS this

function A() {

this.a = 1;

(function() {

console.log(this.a);

})();

}

// Create a new object.

var a = new A();

• It will print undefined
• How to adapt to print 1?

What will the following code print to console?

JS Functions

JS this

function A() {

this.a = 1;

var that = this;

(function() {

console.log(that.a);

})();

}

• It will print 1
• The reference to this is

stored in another variable

What will the following code print to console?

JS Functions

JS this

function A() {

this.a = 1;

var that = this;

(function() {

console.log(that.a);

})();

}

• It will print 1
• The reference to this is

stored in another variable

Why is “this” solution better than using call or apply ?

JS Functions

JS this

function A() {

this.a = 1;

var that = this;

(function() {

console.log(that.a);

})();

}

• It will print 1
• The reference to this is

stored in another variable

Why is “this” solution better than using call or apply ?

Because you can reuse that multiple times!

JS Functions

JS this and Arrow function

However, ES6 has introduced the arrow function that accomplish
the same goal without the need to introduce a new variable.

function A() {

this.a = 1;

(() => {

console.log(this.a);

})();

}

Prototype

⚫ In JS, each object inherits methods and properties from a parent
object called prototype

⚫ In turn, also the prototype object can have an own prototype, and all
the properties are are inherited through the prototype chain

⚫ It is possible to extend an object by extending its prototype or the
prototype of its prototype...

⚫ This pattern is called prototypical inheritance, and it is extremely
powerful–if well understood

JS Inheritance

Prototypical Inheritance

function A() {

this.a = 1;

}

A.prototype.printA = function() {

console.log(this.a);

}

var a = new A();

a.printA(); // 1;

JS Prototypical Inheritance

Prototypical Inheritance

function A() {

this.a = 1;

}

A.prototype.printA = function() {

console.log(this.a);

}

var a = new A();

a.printA(); // 1;

JS Prototypical Inheritance

⚫ What is the difference with defining

define the method printA inside the

constructor? (this.printA = function …)

Prototype vs Property

// Create a second object.

var a2 = new A();

// Assign property to method printA.

a2.printA.foo = 1;

// Property is also on object a

// because it is the prototype

// to be modified.

console.log(a.print.foo); // 1

JS Prototypical Inheritance

Prototype vs Property

JS Prototypical Inheritance

⚫ Extending the prototype of the function leads to faster
object creations because all the methods are already
existing and only need to be referenced instead of being
created

⚫ However sometimes you need to have a clear separation
between methods of objects of the same class

Prototype vs Property

Looping in Objects (For In)

⚫ Javascript does not guarantee clear separation between
variables of the prototype and of the object itself

⚫ Therefore, when looping through the properties of an
object it is necessary to invoke the method
.hasOwnProperty

Prototype vs Property

Looping in Objects (For In)

var triangle = { a: 1, b: 2, c: 3 };

function ColoredTriangle() {

this.color = "red";

}

ColoredTriangle.prototype = triangle;

var obj = new ColoredTriangle();

for (var prop in obj) {

if (obj.hasOwnProperty(prop)) {

console.log(obj[prop]);

}

}

Debugging

⚫ Use the debugger keyword to stop and inspect your live code

⚫ In the browser you need to keep the JavaScript console open

⚫ In node.JS you need to call node debug (node inspect):

⚫ node debug launcher.js

⚫ Useful Doc:

http://www.w3schools.com/js/js_debugging.asp

https://nodejs.org/api/debugger.html

Debugging

http://www.w3schools.com/js/js_debugging.asp
https://nodejs.org/api/debugger.html

First Exercise!

Hands On 6: Debugging

Save the lines below as "constant-error.js" and try to run it.

const fs = require('fs');

const path = require('path’);

debugger;

// Assign a new property to the fs object.

fs.aNewProperty = 'some value';

// Reassign the fs object.

fs = 'a new life';

First Exercise!

Hands On 6: Debugging

n: next line

s: step into a function call

Repl: enter into Read–eval–print loop

To launch the debugger:
node debug or node inspect

What is the option -g doing?

Linting Tool: JSHint

⚫ You might be interested in one of the plugins for editors (vim, emacs, atom, sublime...)

jshint constant-error.js --show-non-errors

npm install -g jshint

