
Design and
Implementation of
Online Experiments

nodeGame.org

Stefano Balietti

MZES and Heidelberg

nodeGame

Intermediate

@balietti
@nodegameorg

stefanobalietti.com@gmail.com

First Exercise!

Folder game/client_types/

• Client types implement the sequence
• The same sequence can be implemented differently,

depending by who is playing or where the code is
going to be executed

Human, web browser

Computer (orchestrator), server

Information Flow for Client Type

Information Flow for Client Type

Read

1

Information Flow for Client Type

• Decide a treatment and

• Load a client type with correct settings

Read

3

1 2

Read

Information Flow for Client Type

• Decide a treatment and

• Load a client type with correct settings

Read

3

1 2

Read

1 23

Has available

First Exercise!

How To Implement a Sequence

⚫ Use Stager API stager.[method]

⚫ Initialize game
stager.setOnInit(function() {

// For instance, create Header and Frame, add widgets, etc.

});

⚫ Add properties to stages and steps

stager.extendStage("stageId", {

foo: bar

});

stager.extendStep("stepId", {

foo: bar2

});

Client-Types-v5

https://en.wikipedia.org/wiki/Foobar

Remember foo bar right?

‘https:/github.com/nodeGame/nodegame/wiki/Client-Types-v5
https://en.wikipedia.org/wiki/Foobar

First Exercise!

How To Implement a Sequence

⚫ Use Stager API stager.[method]

⚫ Initialize game
stager.setOnInit(function() {

// For instance, create Header and Frame, add widgets, etc.

});

⚫ Add properties to stages and steps

stager.extendStage("ultimatum", {

foo: bar

});

stager.extendStep("bidder", {

foo: bar2

});

Client-Types-v5

stager
.next('selectLanguage')
.next('instructions')
.repeat('ultimatum', 2)
.step('bidder')
.step('respondent')
.next('questionnaire')

game.stages.js

The name of the stage/step must be found in the game sequence.

A property defined at the stage level is shared with all the steps inside the
same stage.

In this example, the step "bidder" is overwriting the value of foo defined at
the stage level. What is the value of foo in step "respondent"?

‘https:/github.com/nodeGame/nodegame/wiki/Client-Types-v5

First Exercise!

The step-property cb

stager.extendStep('selectLanguage', {

frame: 'languageSelection.html',

cb: function() {

// Let's do something in here. What?

}

});

Client-Types-v5

Cb is a shorthand for "Callback," which simply means function.
After the frame has been loaded, the callback is executed doing something on the page.

Don't forget comma, this is an object.

Note! extendStage cannot have a cb property

‘https:/github.com/nodeGame/nodegame/wiki/Client-Types-v5

First Exercise!

The step-property cb

document.body

document.createElement('div')

document.getElementById('myId')

location.href

alert

Client-Types-v5

Important! Although the function is created on the server, it is sent and executed on the client.
So, it has access to the DOM tree, the default JS objects as well as nodeGame objects.

https://www.w3schools.com/jsref/obj_window.asp

Examples of JavaScript objects and methods
we have already seen in this course.

Full list available:

‘https:/github.com/nodeGame/nodegame/wiki/Client-Types-v5
https://www.w3schools.com/jsref/obj_window.asp

First Exercise!

The step-property cb

document.body

document.createElement('div')

document.getElementById('myId')

location.href

alert

Client-Types-v5

Important! Although the function is created on the server, it is sent and executed on the client.
So, it has access to the DOM tree, the default JS objects as well as nodeGame objects.

https://www.w3schools.com/jsref/obj_window.asp

Examples of JavaScript objects and methods
we have already seen in this course.

Full list available:

node (nodeGame)

Main nodeGame objects

• The entire nodeGame client API
• node.game contains all game-related methods and objects,

including sequence, treatment settings, etc.
• node.widgets contains method to create widgets

• Methods for manipulating the graphical interface

• Collection of helper functions, e.g. random integer numbers.

J (JSUS = JS UtilS)

W (Window)

‘https:/github.com/nodeGame/nodegame/wiki/Client-Types-v5
https://www.w3schools.com/jsref/obj_window.asp

First Exercise!

Adding Widgets to the Page

stager.extendStep('selectLanguage', {

frame: 'languageSelection.html',

cb: function() {

node.game.lang = node.widgets.append('LanguageSelector',

W.getFrameDocument().body);

}

});

Widgets-v5

Here, we add a nodeGame Widget to select the language (as the step id suggests).

node.widgets.append takes 3 parameters: the name of the widget, where it should be appended, and an
optional configuration object with options for the widget (not used here).

https://github.com/nodeGame/nodegame/wiki/Widgets-v5

First Exercise!

Adding Widgets to the Page

stager.extendStep('selectLanguage', {

frame: 'languageSelection.html',

cb: function() {

node.game.lang = node.widgets.append('LanguageSelector',

W.getFrameDocument().body);

}

});

Widgets-v5

Here, we add a nodeGame Widget to select the language (as the step id suggests).

node.widgets.append takes 3 parameters: the name of the widget, where it should be appended, and an
optional configuration object with options for the widget (not used here).

https://github.com/nodeGame/nodegame/wiki/Widgets-v5

First Exercise!

Adding Widgets to the Page

stager.extendStep('selectLanguage', {

frame: 'languageSelection.html',

cb: function() {

node.game.lang = node.widgets.append('LanguageSelector',

W.getFrameDocument().body);

}

});

Widgets-v5

Here, we add a nodeGame Widget to select the language (as the step id suggests).

node.widgets.append takes 3 parameters: the name of the widget, where it should be appended, and an
optional configuration object with options for the widget (not used here).

https://github.com/nodeGame/nodegame/wiki/Widgets-v5

First Exercise!

Adding Widgets to the Page

stager.extendStep('selectLanguage', {

frame: 'languageSelection.html',

cb: function() {

node.game.lang = node.widgets.append('LanguageSelector',

W.getFrameDocument().body);

}

});

Widgets-v5

Here, we add a nodeGame Widget to select the language (as the step id suggests).

node.widgets.append takes 3 parameters: the name of the widget, where it should be appended, and an
optional configuration object with options for the widget (not used here).

It returns a reference to the widget object, which we store with the name lang inside the node.game object.
Important! node.game stores information that might be needed across steps. If you need to access the widget
only within the same step, you might as well use a local variable (var lang = …) or avoid any assignment altogether.

https://github.com/nodeGame/nodegame/wiki/Widgets-v5

First Exercise!

Adding Widgets to the Page

stager.extendStep('selectLanguage', {

frame: 'languageSelection.html',

cb: function() {

node.game.lang = node.widgets.append('LanguageSelector',

W.getFrameDocument().body);

}

});

Widgets-v5

Here, we add a nodeGame Widget to select the language (as the step id suggests).

W (stands for Window) is an object that helps to manipulate the user interface. Here, W is returning the body tag.

Why can't we use document.body? We could, but it would not be the body we expect.
Let's learn what's going on behind the user interface.

https://github.com/nodeGame/nodegame/wiki/Widgets-v5

Understanding the User Interface

Understanding the User Interface

• It is created at
initialization

• It stays throughout
the whole game

Header

Understanding the User Interface

Header
• It is created at

initialization
• It stays throughout

the whole game
• Widgets such as

timers, stage
counters, and done
button are generally
added here

DoneButton widget

VisualTimer widget

VisualRound widget

Understanding the User Interface

Frame
• It is created at

initialization
• Its content is

updated at every
step according to the
value of the frame
step-property

In the HTML language, the frame is an IFRAME tag, that is a
completely separate HTML page within the parent page.

Note! The iframe has a
separate document object.

The Frame

In the HTML language, the frame is an IFRAME tag, that is a
completely separate HTML page within the parent page.

The node object lives inside the parent
page (because it is a stable environment,
does not change at every step).

Therefore, document.body refers to the
parent body.

The Frame

In the HTML language, the frame is an IFRAME tag, that is a
completely separate HTML page within the parent page.

The node object lives inside the parent
page (because it is a stable environment,
does not change at every step).

Therefore, document.body refers to the
parent body.

To access elements of the frame, we need
to use the W object, which takes care of
most issues for us.

The Frame

First Exercise!

Creating a Page Structure

Here, we create a new DIV, we add the treatment dependent variable salutation from the
settings object, and we append the DIV to the body of the frame.

We add two div elements, and we give them an id so that they cab be easily be fetched by JavaScript.
Note! The DIV elements are by default displayed as "blocks," that is one below the other. With a SPAN element it
might be different.

First Exercise!

Treatment-Dependent Display

stager.extendStep('selectLanguage', {

frame: 'languageSelection.html',

cb: function() {

// Store a reference to the above and below elements.

var above = W.getElementById('above');

var below = W.gid('below'); // Shorthand for getElementById

// Append the SVO widget below.

node.widgets.append('SVOGauge', below);

// Add a new element to the page.

var div = document.createElementById('div');

// Fill in treatment-dependent content.

div.innerHTML = node.game.settings.salutation;

// Append in the above element.

above.appendChild(div);

}

});

Here, we create a new DIV, we add the treatment dependent variable salutation from the
settings object, and we append the DIV to the body of the frame.

First Exercise!

Treatment-Dependent Display

As a result, the salutation is inserted above the SVO widget.

First Exercise!

External CSS Files

The h1 tag is a display tag for "headings," i.e., titles. There are different heading size
from 1 the biggest, to 6 the smallest.

Our h1 tag as a class attribute equals to margin-bottom. What does it mean?
In one of the stylesheets above there is a class named margin-bottom with some
rules defined. Can you find it?

First Exercise!

External CSS Files

The h1 tag is a display tag for "headings," i.e., titles. There are different heading size
from 1 the biggest, to 6 the smallest.

Our h1 tag as a class attribute equals to margin-bottom. What does it mean?
In one of the stylesheets above there is a class named margin-bottom with some
rules defined. Can you find it?

An easy entry-point to CSS rules can be found here:

https://www.w3schools.com/Css/

https://www.w3schools.com/Css/

First Exercise!

External CSS Files

<link> tags import CSS rules to style the display of page elements
Notice! Link tags are self-closing, that is: there is no </link> at the end

What other HTML tags are self closing?
Hint: A self-closing does not need to contain something else.

First Exercise!

External CSS Files

The href attribute is the path to a CSS file.

Notice! The path for the first two files begins with / meaning that these files are to be found at the very top of the directory
structure, that is the nodeGame server. To view it, open your browser at the address:
http://localhost:8080/stylesheets/nodegame.css

First Exercise!

External CSS Files

The href attribute is the path to a CSS file.

Notice! The path for the first two files begins with / meaning that these files are to be found at the very top of the directory
structure, that is the nodeGame server. To view it, open your browser at the address:
http://localhost:8080/stylesheets/nodegame.css

The last CSS file does not start with / meaning that it is a file local to your game. Where it is? Do you remember the commands to
navigate the file system in the terminal? cd .. means to go one directory above the current one, and here .. Means to go one
directory above the current one. We are in public/en/, so the file can be found in public/css/style.css

You can also view it with your browser at the address:
http://localhost:8080/ultimatum/css/style.css

First Exercise!

Create a New Game

1

First Exercise!

Create a New Game

2

1

First Exercise!

Create a New Game

3

First Exercise!

Create a New Game

4

3

First Exercise!

Create a New Game

5

http://localhost:8080
Our new game is there!

First Exercise!

The Default Template of a New Game

• The default template is a basic Dictator Game
• The Dictator game is like an Ultimatum, but even simpler:

after an offer is made, the other player cannot reply, he or
she must merely observe.

• It is appropriate to study fairness and altruism
• A rational player should always offer 0, however non-zero

offers are common in experiments
• Framing makes a difference: taking from vs giving to others

Dictator Game

https://en.wikipedia.org/wiki/Dictator_game

First Exercise!

The Default Template of a New Game

How can we improve this basic game?

1. Add a feedback form at the end of the experiment
2. Add an understanding quiz after the instructions
3. Add a bot client type
4. Fix the timer issue?

First Exercise!

Is Timer Always 00:00?

If so, follow these steps once:
1. Stop the server (Ctrl-C)
2. Start it with –b option to

rebuild (smoosh) the client
3. TA DA!
4. Still no Timer? Sometimes

browsers cache resources.
Clear the cache, open a
"Private Mode" tab, or try
another browser.

First Exercise!

Modify Game Sequence

stager

.next('instructions')

.next('quiz')

.repeat('game', settings.REPEAT)

.next('feedback')

.next('end')

.gameover();

• Let's start by adding two new
stages: 'feedback' and 'quiz'.

• Remember! When you
develop a new game you can
you skip stages with
stager.skip

stager.extendStep('feedback', {

widget: {

name: 'Feedback',

options: {

mainText: 'Leave comments here',

minChars: 100,

minWords: 5,

showSubmit: false

requiredChoice: true,

}

}

});

First Exercise!

Implement The Feedback Stage Feedback-Widget

https://github.com/nodeGame/nodegame/wiki/Feedback-Widget-v5

stager.extendStep('feedback', {

widget: {

name: 'Feedback',

options: {

mainText: 'Leave comments here',

minChars: 100,

minWords: 5,

showSubmit: false

requiredChoice: true,

}

}

});

First Exercise!

Implement The Feedback Stage

Here, we are defining a "widget-step," that is one widget
will be added to the page and govern its behavior.

Feedback-Widget

mainText is a text shown before the
widget (many widgets have this option)

The name of the "widget"

minChars and minWords are widget-
specific options, and control how many
characters and words must be typed in

showSubmit removes the submit
button (we will use the Done button)requiredChoice will prevent the user to

continue if not enough input is typed in

https://github.com/nodeGame/nodegame/wiki/Feedback-Widget-v5

First Exercise!

Implement The Feedback Stage Feedback-Widget

• The Feedback Widget is here! It requires to input at least 100 characters
and 5 words.

• However, it look a bit ugly, because it stretches throughout the full page
width. Let's make it centered.

https://github.com/nodeGame/nodegame/wiki/Feedback-Widget-v5

First Exercise!

Implement The Feedback Stage

stager.extendStep('feedback', {

widget: {

name: 'Feedback',

root: 'container',

options: {

className: 'centered',

mainText: 'Leave your comments here',

minChars: 100,

minWords: 5,

showSubmit: false,

requiredChoice: true

}

}

});

root specified the id of element under
which you want to append the widget.
Here, we did not specify a frame step
property, hence the default frame is used,
which contains a DIV with id "container"

Feedback-Widget

className makes sure to
center the widget inside the
its root element.

https://github.com/nodeGame/nodegame/wiki/Feedback-Widget-v5

First Exercise!

Implement The Feedback Stage

stager.extendStep('feedback', {

widget: {

name: 'Feedback',

root: 'container',

options: {

className: 'centered',

mainText: 'Leave your comments here',

minChars: 100,

minWords: 5,

showSubmit: false,

requiredChoice: true

}

}

});

Feedback-Widget

https://github.com/nodeGame/nodegame/wiki/Feedback-Widget-v5

First Exercise!

Implement The Feedback Stage Feedback-Widget

Well Done!
We can also make its appearance more sleek, by removing the panel and the title.

https://github.com/nodeGame/nodegame/wiki/Feedback-Widget-v5

First Exercise!

Implement The Feedback Stage

stager.extendStep('feedback', {

widget: {

name: 'Feedback',

root: 'container',

options: {

className: 'centered',

mainText: 'Leave your comments here',

minChars: 100,

minWords: 5,

requiredChoice: true,

showSubmit: false,

// For every widget.

panel: false,

title: false

}

}

});

These options are valid for all widgets

Feedback-Widget

https://github.com/nodeGame/nodegame/wiki/Feedback-Widget-v5

First Exercise!

How To Ask Feedback Properly?

⚫ Eliciting feedback is vital when you pilot your experiment

⚫ Start with precise questions to collect the most important info first

⚫ Was the purpose of the task clear?
⚫ Did you have enough time for "Step X"?
⚫ Did you follow a strategy for playing?

First Exercise!

How To Ask Feedback Properly?

⚫ Eliciting feedback is vital when you pilot your experiment

⚫ Start with precise questions to collect the most important info first

⚫ Was the purpose of the task clear?
⚫ Did you have enough time for "Step X"?
⚫ Did you follow a strategy for playing?

This is usually a crucial
step (e.g., where the take
an interactive decision)

Could be made more specific, i.e., checking for specific actions.

Multiple choices are also appropriate here, but at a pilot stage, you might want to let
them to answer with their own words

First Exercise!

How To Ask Feedback Properly?

⚫ Later on, move into more general questions

⚫ Did you feel the survey/game was boring/engaging/difficult?
⚫ Was the payment appropriate?

⚫ Was the task too long/too short?

⚫ Anything else you would like add.

⚫ You may still keep the Feedback form in the main experiment if you
have time/budget for it.

First Exercise!

How To Ask Feedback Properly?

⚫ Later on, move into more general questions

⚫ Did you feel the survey/game was boring/engaging/difficult?
⚫ Was the payment appropriate?

⚫ Was the task too long/too short?

⚫ Anything else you would like add.

⚫ You may still keep the Feedback form in the main experiment if you
have time/budget for it.

Note! Basically, none will
say too short/too much
money, so you need to
interpret their answers. On
the other hand, if many say
it was too long, you
certainly have a problem.

First Exercise!

Implement The Quiz Stage

stager.extendStep('quiz', {

widget: {

name: 'ChoiceManager',

root: 'container',

options: {

className: 'centered',

mainText: 'A small quiz',

forms: [

// Here we add the questions.

]

}

}

});

ChoiceManager-Widget

https://github.com/nodeGame/nodegame/wiki/ChoiceManager-Widget-v5

First Exercise!

Implement The Quiz Stage

stager.extendStep('quiz', {

widget: {

name: 'ChoiceManager',

root: 'container',

options: {

className: 'centered',

mainText: 'A small quiz',

forms: [

// Here we add the questions.

]

}

}

});

ChoiceManager-Widget

Here, we create a widget-step for
widget ChoiceManager.
The choice manager contains and
manages survey widgets ("choice"
widgets).

forms is the array where we add the
choice widgets, or objects specifying
the options how to create them
(and they are automatically created
for us).

https://github.com/nodeGame/nodegame/wiki/ChoiceManager-Widget-v5

First Exercise!

Implement The Quiz Stage

forms: [

{

name: 'ChoiceTable',

id: 'understand_roles',

mainText: 'What are the roles in this game?',

hint: 'I know you know it!',

choices: [

'Observer and Dictator',

'Sancho and Pancho',

'Batman and Robin',

"I don't know",

'I wish I\'d know it'

],

correctChoice: 0,

shuffleChoices: true

},

]

ChoiceManager-Widget

https://github.com/nodeGame/nodegame/wiki/ChoiceManager-Widget-v5

First Exercise!

Implement The Quiz Stage

forms: [

{

name: 'ChoiceTable',

id: 'understand_roles',

mainText: 'What are the roles in this game?',

hint: 'I know you know it!',

choices: [

'Observer and Dictator',

'Sancho and Pancho',

'Batman and Robin',

"I don't know",

'I wish I\'d know it'

],

correctChoice: 0,

shuffleChoices: true

},

]

ChoiceManager-Widget

Here, we add a ChoiceTable widget, a table with clickable cells.

choices is an array containing texts or numbers
that will be displayed in the table's cells.

Note! You need to escape quotes (\' or \"), or
use a different quote to wrap the whole string.

correctChoice marks the position of the correct choice (0-
indexed). shuffleChoices displays the choices in random order.

hint is a small explanation after the main text

id is the name under which the answer is
saved in the data (not displayed to the user)

https://github.com/nodeGame/nodegame/wiki/ChoiceManager-Widget-v5

First Exercise!

Implement The Quiz Stage ChoiceManager-Widget

By default there is no title and no panel around the choice widgets inside the
ChoiceManager.

https://github.com/nodeGame/nodegame/wiki/ChoiceManager-Widget-v5

First Exercise!

Implement The Quiz Stage ChoiceManager-Widget

orientation: 'V' // vertical

• You can set the vertical display adding the option orientation.
• This is useful when you have larger texts to be selected (e.g., when testing

differences between treatments)

https://github.com/nodeGame/nodegame/wiki/ChoiceManager-Widget-v5

First Exercise!

Implement The Quiz Stage ChoiceManager-Widget

orientation: 'V' // vertical

• You can set the vertical display adding the option orientation.
• This is useful when you have larger texts to be selected (e.g., when testing

differences between treatments)

How to align the

text to the left?

We need to specify a

CSS rule! But How?

https://github.com/nodeGame/nodegame/wiki/ChoiceManager-Widget-v5

First Exercise!

Adding a New CSS Rule HTML Tables

Let's inspect the element we want to style.
We see that the ChoiceTable widget is indeed creating a <TABLE>.
Inside the table, each row is inside a <TR>, and each cell inside a <TD> element.
We need to style the all the TD tags inside the TABLE with id "understand_roles".

https://www.w3schools.com/html/html_tables.asp

First Exercise!

Adding a Custom CSS Rule to the Page

stager.extendStep('quiz', {

widget: {

name: 'ChoiceManager',

// Further options hidden.

}

},

cb: function() {

W.cssRule('#understand_roles td { text-align: left; }');

}

});

W.cssRule lets us add a quick modification
to the default CSS rule of the page.

However, if you need many new rules, it
makes sense to write a separate CSS file and
import into the page with the <link> tag.

CSS Syntax

https://www.w3schools.com/Css/css_syntax.asp

First Exercise!

Adding a Custom CSS Rule to the Page

stager.extendStep('quiz', {

widget: {

name: 'ChoiceManager',

// Further options hidden.

}

},

cb: function() {

W.cssRule('#understand_roles td { text-align: left; }');

}

});

A CSS rule is composed of two parts:
• A selector, which finds the elements to

which the rule applies
• The rule itself

SELECTOR RULE

CSS Syntax

https://www.w3schools.com/Css/css_syntax.asp

First Exercise!

Adding a Custom CSS Rule to the Page

stager.extendStep('quiz', {

widget: {

name: 'ChoiceManager',

// Further options hidden.

}

},

cb: function() {

W.cssRule('#understand_roles td { text-align: left; }');

}

}); SELECTOR

#understand_roles means the element with id "understand_roles"
#understand_roles td means all the TD elements inside the element
with id "understand_roles"

CSS Syntax

https://www.w3schools.com/Css/css_syntax.asp

First Exercise!

Adding a Custom CSS Rule to the Page

stager.extendStep('quiz', {

widget: {

name: 'ChoiceManager',

// Further options hidden.

}

},

cb: function() {

W.cssRule('#understand_roles td { text-align: left; }');

}

}); SELECTOR

CSS Syntax

Note! This rule applies only the first question

with id "understand_roles." If we have more quiz

questions to style we could call W.cssRule

several times with different ids, but a better

strategy is to define a more general rule. How?

Hint. Check the CSS Syntax link to learn how to

select elements with a given class.

https://www.w3schools.com/Css/css_syntax.asp

First Exercise!

Add a Second Quiz Question

forms: [

{

// First question (code hidden)

},

{

name: 'ChoiceTable',

id: 'understand_money',

mainText: 'How many coins will you split?',

choices: [

0, 1, 10, 100, 'I do not know'

],

correctChoice: 3,

shuffleChoices: true

}

]

We just add a second object after the
first one in the forms array.
Do not forget the comma!

First Exercise!

Adding a Bot to the Game

• A bot is a computer controlled player that goes through the same stages and steps

• A bot does not need to visualize any HTML, instructions, quizzes, etc.

• Important! There is no need to implement a bot if the computer-made decisions are

simple and limited to one step only. You could code those decisions in the logic file.

• However, writing a bot has some advantages:

• A bot gives a clearer separation of code

• A bot lets you use the Play with Bots option from the waiting room

• A bot can replace a human player that dropped out

First Exercise!

Adding a Bot to the Game

To implement a bot you need to add your code to file bot.js in folder client_types/

stager.setDefaultCallback(function() {

this.node.timer.randomDone();

});

First, we are setting the default callback for every step.

In the callback, we are telling the bot to be DONE after a random time interval, using the
node.timer.randomDone() method.

DONE is a special nodeGame event that ends the current step. After all players are DONE, the
game will proceed to the next step in the sequence.

First Exercise!

Adding a Bot to the Game

To implement a bot you need to add your code to file bot.js in folder client_types/

stager.setDefaultCallback(function() {

this.node.timer.randomDone();

});

Why are we using this.node instead of just node ?

The node object is a global variable in the browser, i.e., it is accessible from anywhere in the code.

However, in the server node is not global, i.e, you need a reference to access it. When the callback
function is executed a special reference is added inside it, and you can access it through the this
operator.

First Exercise!

Adding a Bot to the Game

Next, you need to code the behavior of the bot for those steps that need a decision.

The easiest approach is to copy the relevant code from the player client type and adapt it.

stager.extendStep('game', {

roles: {

DICTATOR: {

cb: function() {

this.node.done({ offer: 1 });

}

},

OBSERVER: {

cb: function() {

// Store a local reference of node.

var node = this.node;

node.on.data('decision', function(msg) {

setTimeout(function() {

node.done();

}, 5000);

});

}

}

}});

After we removed all the unnecessary
HTML manipulation, this is the bare
skeleton we are left with.

If the bot is a dictator, it will always
make an offer of 1.

If the bot is an observer, it will wait for
the offer and then simply call DONE
after waiting exactly 5 seconds.

First Exercise!

Adding a Bot to the Game

Next, you need to code the behavior of the bot for those steps that need a decision.

The easiest approach is to copy the relevant code from the player client type and adapt it.

stager.extendStep('game', {

roles: {

DICTATOR: {

cb: function() {

this.node.done({ offer: 1 });

}

},

OBSERVER: {

cb: function() {

// Store a local reference of node.

var node = this.node;

node.on.data('decision', function(msg) {

setTimeout(function() {

node.done();

}, 5000);

});

}

}

}});

node.on.data is waiting for a message from
the server.

When a message arrives with the label
'decision', the callback function is executed
with the message as input parameter.

A more complex bot in a more complex game
could make use of this information to send a
reply accordingly.

First Exercise!

Enable Play with Bots in Waiting Room

The bot is ready, you can now test it!

Enable bots in the waitroom.settings.js file.

