
Design and
Implementation of
Online Experiments

nodeGame.org

Stefano Balietti

MZES and Heidelberg

More
nodeGame

@balietti
@nodegameorg

stefanobalietti.com@gmail.com

First Exercise!

Configuration and game files are separated different folders

Game’s Anatomy

• Define treatments
• Define the sequence of stages and steps of the experiment
• Implement the rules of interactions among participants
• General setup

• Define the graphical contents of the game

• Define the rules about how to assign treatments to
game rooms, and participants to treatments

Folder waitroom/

// How many clients must connect before groups are formed

POOL_SIZE: 2,

// The size of each group

GROUP_SIZE: 2,

Waiting-Room-v5

Change waiting room options
Start 2 groups simultaneously with random treatment assignment (hint: POOL_SIZE)

https://github.com/nodeGame/nodegame/wiki/Waiting-Room-v5

Folder waitroom/

// How many clients must connect before groups are formed

POOL_SIZE: 2,

// The size of each group

GROUP_SIZE: 2,

Change waiting room options
Start 2 groups simultaneously with random treatment assignment (hint: POOL_SIZE)

A larger pool size allows you to:
- Reshuffle groups after each experiment
- Ensure that randomization is effective

(e.g., distribute fast participants across
treatments, or other forms of stratified
assignment).

Waiting-Room-v5

https://github.com/nodeGame/nodegame/wiki/Waiting-Room-v5

Reading Errors

File Name and Line Number

Note! The line number is not always where the error actually lies. In fact, it is often
on a subsequent line. Here, without the comma, the compiler does not even know
that a line ended. When you forget a parenthesis, the errored line number can be the
last line of the file, which makes it very difficult to find the error's actual position.

First Exercise!

Folder game/

Define the sequence of stages
and steps of the experiment

Define game variables and
group them into treatments

First Exercise!

Stages Definition

stager

.next('id_of_stage')

stager

.step('id_of_step1_within_stage')

.step('id_of_step2_within_stage')

stager

.repeat('id_stage_to_repeat', 3)

We use the stager API to define the sequence (the order matters here!)

A sequence contains stages, and stages contain steps

Stager-API-v5

Here, we "chain" two method calls together.
We can do it, because each method is
returning a stager object, so it is a more
compact way of writing:

stager.step('id_of_step1_within_stage');

stager.step('id_of_step2_within_stage');

https://github.com/nodeGame/nodegame/wiki/Stager-API-v5

First Exercise!

Stages Definition

Game Sequence Code Snippet

stager.stage("instructions")

.step("instructions_1")

.step("instructions_2")

.step("instructions_3");

stager.stage("quiz");

stager.repeat("game", 3)

stager.stage("questionnaire");

stager.extendStage("game", {

steps: ["offer",

"respond",

"display_results"]

});

Stager-API-v5

https://github.com/nodeGame/nodegame/wiki/Stager-API-v5

Skipping Stages and Steps

// Skip stages from the sequence.

stager.skip('precache');

stager.skip('selectLanguage');

stager.skip('quiz');

stager.skip('instructions');

stager.skip('mood');

// Skip the step from the sequence.

stager.skip('ultimatum', 'bidder');

⚫ Skip some stages of the game sequence (very useful for debugging)

First Exercise!

Settings and Treatments

Multiline Comments

Game variables (these two are game-specific)

Node.JS makes the content of this object available outside of the file

Settings-and-Treatments-v5

https://github.com/nodeGame/nodegame/wiki/Settings-and-Treatments-v5

First Exercise!

Settings and Treatments

• Variable TIMER is read by nodeGame’s engine
• It defines the max duration (in milliseconds) of each step
• The names of the properties are the ids of the steps in the

sequence

Settings-and-Treatments-v5

https://github.com/nodeGame/nodegame/wiki/Settings-and-Treatments-v5

First Exercise!

Settings and Treatments

• Property treatments is read by nodeGame’s engine
• It is an object indexed by the names of the treatments
• Each treatment contains all the variables defined outside of

the treatments object, plus what it is defined inside.

Settings-and-Treatments-v5

Treatment names: they will appear in the selection box in the waiting room, together with the description.
You are free to choose any name is appropriate for your experiment.

https://github.com/nodeGame/nodegame/wiki/Settings-and-Treatments-v5

First Exercise!

Settings and Treatments Settings-and-Treatments-v5

WAIT_TIME controls how much time to wait for a disconnected player to reconnect.
This property is read by nodeGame, which automatically adjusts the reconnect timer.

instructionsPage is a game variable that will use later when extending the steps.

By assigning a property with the same name, but with different
values we can define controlled differences in treatments.

https://github.com/nodeGame/nodegame/wiki/Settings-and-Treatments-v5

First Exercise!

Hands On 5

// Change the number of repetition to 1.

REPEAT: 1,

• Change the number of repetition of the ultimatum stage

First Exercise!

Hands On 5

// Change the number of repetition to 1.

REPEAT: 1,

module.exports = function(stager, settings) {

stager
.next('precache')
.next('selectLanguage')
.next('instructions')
.next('quiz')
.next('mood')
.repeat('ultimatum', settings.REPEAT)
.next('questionnaire')
.next('endgame')
.gameover();

First Exercise!

Folder game/client_types/

• Client types implement the sequence
• The same sequence can be implemented differently,

depending by who is playing or where the code is
going to be executed

Human, web browser

Computer (orchestrator), server

First Exercise!

Client Type player.js

⚫ Contains code that will be executed on the client (web browser)
⚫ Has access to all standard JS objects AND nodeGame client API

⚫ However, it is “compiled” on the server, so it also has access to some server objects

Information Flow for Client Type

Information Flow for Client Type

Read

1

Information Flow for Client Type

• Decide a treatment and

• Load a client type with correct settings

Read

3

1 2

Read

Information Flow for Client Type

• Decide a treatment and

• Load a client type with correct settings

Read

3

1 2

Read

1 23

Has available

First Exercise!

How To Implement a Sequence

⚫ Use Stager API stager.[method]

⚫ Initialize game
stager.setOnInit(function() {

// For instance, create Header and Frame, add widgets, etc.

});

⚫ Add properties to stages and steps

stager.extendStage("stageId", {

foo: bar

});

stager.extendStep("stepId", {

foo: bar2

});

Client-Types-v5

https://en.wikipedia.org/wiki/Foobar

Remember foo bar right?

‘https:/github.com/nodeGame/nodegame/wiki/Client-Types-v5
https://en.wikipedia.org/wiki/Foobar

First Exercise!

How To Implement a Sequence

⚫ Use Stager API stager.[method]

⚫ Initialize game
stager.setOnInit(function() {

// For instance, create Header and Frame, add widgets, etc.

});

⚫ Add properties to stages and steps

stager.extendStage("ultimatum", {

foo: bar

});

stager.extendStep("bidder", {

foo: bar2

});

Client-Types-v5

stager
.next('selectLanguage')
.next('instructions')
.repeat('ultimatum', 2)
.step('bidder')
.step('respondent')
.next('questionnaire')

For instance, game.stages.js

The name of the stage/step must match what is defined in the sequence.

A property defined at the stage level is shared with all the steps inside the
same stage.

In this example, the step "bidder" is overwriting the value of foo defined at
the stage level. What is the value of foo in step "respondent"?

‘https:/github.com/nodeGame/nodegame/wiki/Client-Types-v5

First Exercise!

The step-property frame

stager.extendStep('selectLanguage', {

frame: 'languageSelection.html'

});

stager.extendStep('instructions', {

frame: settings.instructionsPage

});

Client-Types-v5

Here, we fix the name to a file, which is in public/.

Controls which HTML page is loaded in the frame for each step.

Here, we take the value from the settings object, so that
the actual frame loaded is treatment-dependent.

‘https:/github.com/nodeGame/nodegame/wiki/Client-Types-v5

First Exercise!

The step-property cb

stager.extendStep('selectLanguage', {

frame: 'languageSelection.html',

cb: function() {

// Let's do something in here. What?

}

});

Client-Types-v5

Cb is a shorthand for "Callback," which simply means function.
After the frame has been loaded, the callback is executed doing something on the page.

Don't forget commas, this is an object.

Note! extendStage cannot have a cb property

‘https:/github.com/nodeGame/nodegame/wiki/Client-Types-v5

First Exercise!

The step-property cb

document.body

document.createElement('div')

document.getElementById('myId')

location.href

alert

Client-Types-v5

Important! Although the function is created on the server, it is sent and executed on the client.
So, it has access to the DOM tree, the default JS objects as well as nodeGame objects.

https://www.w3schools.com/jsref/obj_window.asp

Examples of JavaScript objects and methods
we have already seen in this course.

Full list available:

‘https:/github.com/nodeGame/nodegame/wiki/Client-Types-v5
https://www.w3schools.com/jsref/obj_window.asp

First Exercise!

The step-property cb

document.body

document.createElement('div')

document.getElementById('myId')

location.href

alert

Client-Types-v5

Important! Although the function is created on the server, it is sent and executed on the client.
So, it has access to the DOM tree, the default JS objects as well as nodeGame objects.

https://www.w3schools.com/jsref/obj_window.asp

Examples of JavaScript objects and methods
we have already seen in this course.

Full list available:

node (nodeGame)

Main nodeGame objects

• The entire nodeGame client API
• node.game contains all game-related methods and objects,

including sequence, treatment settings, etc.
• node.widgets contains method to create widgets

• Methods for manipulating the graphical interface

• Collection of helper functions, e.g. random integer numbers.

J (JSUS = JS UtilS)

W (Window)

‘https:/github.com/nodeGame/nodegame/wiki/Client-Types-v5
https://www.w3schools.com/jsref/obj_window.asp

First Exercise!

Adding Widgets to the Page

stager.extendStep('selectLanguage', {

frame: 'languageSelection.html',

cb: function() {

node.game.lang = node.widgets.append('LanguageSelector',

W.getFrameDocument().body);

}

});

Widgets-v5

Here, we add a nodeGame Widget to select the language (as the step id suggests).

node.widgets.append takes 3 parameters: the name of the widget, where it should be appended, and an
optional configuration object with options for the widget (not used here).

https://github.com/nodeGame/nodegame/wiki/Widgets-v5

First Exercise!

Adding Widgets to the Page

stager.extendStep('selectLanguage', {

frame: 'languageSelection.html',

cb: function() {

node.game.lang = node.widgets.append('LanguageSelector',

W.getFrameDocument().body);

}

});

Widgets-v5

Here, we add a nodeGame Widget to select the language (as the step id suggests).

node.widgets.append takes 3 parameters: the name of the widget, where it should be appended, and an
optional configuration object with options for the widget (not used here).

https://github.com/nodeGame/nodegame/wiki/Widgets-v5

First Exercise!

Adding Widgets to the Page

stager.extendStep('selectLanguage', {

frame: 'languageSelection.html',

cb: function() {

node.game.lang = node.widgets.append('LanguageSelector',

W.getFrameDocument().body);

}

});

Widgets-v5

Here, we add a nodeGame Widget to select the language (as the step id suggests).

node.widgets.append takes 3 parameters: the name of the widget, where it should be appended, and an
optional configuration object with options for the widget (not used here).

https://github.com/nodeGame/nodegame/wiki/Widgets-v5

First Exercise!

Adding Widgets to the Page

stager.extendStep('selectLanguage', {

frame: 'languageSelection.html',

cb: function() {

node.game.lang = node.widgets.append('LanguageSelector',

W.getFrameDocument().body);

}

});

Widgets-v5

Here, we add a nodeGame Widget to select the language (as the step id suggests).

node.widgets.append takes 3 parameters: the name of the widget, where it should be appended, and an
optional configuration object with options for the widget (not used here).

It returns a reference to the widget object, which we store with the name lang inside the node.game object.
Important! node.game stores information that might be needed across steps. If you need to access the widget
only within the same step, you might as well use a local variable (var lang = …) or avoid any assignment altogether.

https://github.com/nodeGame/nodegame/wiki/Widgets-v5

First Exercise!

Adding Widgets to the Page

stager.extendStep('selectLanguage', {

frame: 'languageSelection.html',

cb: function() {

node.game.lang = node.widgets.append('LanguageSelector',

W.getFrameDocument().body);

}

});

Widgets-v5

Here, we add a nodeGame Widget to select the language (as the step id suggests).

W (stands for Window) is an object that helps to manipulate the user interface. Here, W is returning the body tag.

Why can't we use document.body? We could, but it would not be the body we expect.
Let's learn what's going on behind the user interface.

https://github.com/nodeGame/nodegame/wiki/Widgets-v5

Understanding the User Interface

Understanding the User Interface

• It is created at
initialization

• It stays throughout
the whole game

Header

Understanding the User Interface

Header
• It is created at

initialization
• It stays throughout

the whole game
• Widgets such as

timers, stage
counters, and done
button are generally
added here

DoneButton widget

VisualTimer widget

VisualRound widget

Understanding the User Interface

Frame
• It is created at

initialization
• Its content is

updated at every
step according to the
value of the frame
step-property

In the HTML language, the frame is an IFRAME tag, that is a
completely separate HTML page within the parent page.

Note! The iframe has a
separate document object.

The Frame

In the HTML language, the frame is an IFRAME tag, that is a
completely separate HTML page within the parent page.

The node object lives inside the parent
page (because it is a stable environment,
does not change at every step).

Therefore, document.body refers to the
parent body.

The Frame

In the HTML language, the frame is an IFRAME tag, that is a
completely separate HTML page within the parent page.

The node object lives inside the parent
page (because it is a stable environment,
does not change at every step).

Therefore, document.body refers to the
parent body.

To access elements of the frame, we need
to use the W object, which takes care of
most issues for us.

The Frame

First Exercise!

Adding Widgets to the Page

stager.extendStep('selectLanguage', {

frame: 'languageSelection.html',

cb: function() {

// Store a reference to the body.

var body = W.getFrameDocument().body;

node.widgets.append('SVOGauge', body);

}

});

Widgets-v5

Here, we remove the LanguageSelector widget and we try out the SVOGauge widget,
which measures social value orientation.

Note! Here, we do not store the SVO widget
in a variable, we simply add it to the page.

https://github.com/nodeGame/nodegame/wiki/Widgets-v5

First Exercise!

Adding Widgets to the Page

stager.extendStep('selectLanguage', {

frame: 'languageSelection.html',

cb: function() {

// Store a reference to the body.

var body = W.getFrameDocument().body;

node.widgets.append('SVOGauge', body);

}

});

Widgets-v5

Here, we remove the LanguageSelector widget and we try out the SVOGauge widget,
which measures social value orientation.

However, the title "Select a
Language" is no longer appropriate.
Let's change it in the HTML page.

https://github.com/nodeGame/nodegame/wiki/Widgets-v5

First Exercise!

⚫ Implement Game Sequence: Change contents of frame to select the language
⚫ Go inside folder public/

⚫ Modify file public/en/languageSelection.html

Original content:

Modifying a Frame

First Exercise!

Modifying a Frame

The h1 tag is a display tag for "headings," i.e., titles. There are different heading size
from 1 the biggest, to 6 the smallest.

You can no longer select a language…but what about an SVO Quiz?

First Exercise!

Treatment-Dependent Display

We want to display some information which depends on the chosen treatment.
Let's add a variable called salutation in each treatment.

First Exercise!

Treatment-Dependent Display

We want to display some information which depends on the chosen treatment.
Let's add a variable called salutation in each treatment.

When the waiting room dispatches a new game
room, it will randomly select a treatment, build
the full settings object, and send it to the browser,
which stores it under node.game.settings

JavaScript console on the browser

First Exercise!

Treatment-Dependent Display

stager.extendStep('selectLanguage', {

frame: 'languageSelection.html',

cb: function() {

// Store a reference to the body.

var body = W.getFrameDocument().body;

node.widgets.append('SVOGauge', body);

// Add a new element to the page.

var div = document.createElementById('div');

// Fill in treatment-dependent content.

div.innerHTML = node.game.settings.salutation;

// Append div to the body.

body.appendChild(div);

}

});

Here, we create a new DIV, we add the treatment dependent variable salutation from the
settings object, and we append the DIV to the body of the frame.

First Exercise!

Treatment-Dependent Display

stager.extendStep('selectLanguage', {

frame: 'languageSelection.html',

cb: function() {

// Store a reference to the body.

var body = W.getFrameDocument().body;

node.widgets.append('SVOGauge', body);

// Add a new element to the page.

var div = document.createElementById('div');

// Fill in treatment-dependent content.

div.innerHTML = node.game.settings.salutation;

// Append div to the body.

body.appendChild(div);

}

});

Here, we create a new DIV, we add the treatment dependent variable salutation from the
settings object, and we append the DIV to the body of the frame.

The value of this text will be different for the two treatments. Why is it at the
bottom? Because appendChild always append at the end of the element.

First Exercise!

Creating a Page Structure

Here, we create two new HTML DIV elements, which will host our data.

We also give an id so that they can be easily fetched by JavaScript.
Note! The DIV elements are by default displayed as "blocks," that is one below the other. With a SPAN element
the display might be different.

First Exercise!

Treatment-Dependent Display

stager.extendStep('selectLanguage', {

frame: 'languageSelection.html',

cb: function() {

// Store a reference to the above and below elements.

var above = W.getElementById('above');

var below = W.gid('below'); // Shorthand for getElementById

// Append the SVO widget below.

node.widgets.append('SVOGauge', below);

// Add a new element to the page.

var div = document.createElementById('div');

// Fill in treatment-dependent content.

div.innerHTML = node.game.settings.salutation;

// Append in the above element.

above.appendChild(div);

}

});

Here, we create a new DIV, we add the treatment dependent variable salutation from the
settings object, and we append the DIV to the body of the frame.

First Exercise!

Treatment-Dependent Display

As a result, the salutation is inserted above the SVO widget.

